

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Photonics							
Course Code	EEE512		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit 8	Workload	200 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course	students the f and Optical F as LEDS and inciples of pho	undamen iber Com lasers ar ptonic dev	tal concepts of munication de e discussed ar vices are exam	photonics and vices are in th d mathematic ined	d optics. There e scope of the al modelles ar	efore, Photodetec course. Various e obtained. Lastl	ctors, photon ly,	
Course Content	The basic des Electromagner surfaces. Stat	criptions of lig tic theory of lig tistical optics a	ht as rays ght. Refle and photo	s (geometrical ection and refra on optics.	optics), waves ction of light ra	s (physical opti ays and waves	ics), and photons s from planar and	s. d curved
Work Placement N/A								
Planned Learning Activities and Teaching Methods		Explana Based S	Explanation (Presentation), Demonstration, Discussion, Case Study, Project Based Study, Individual Study, Problem Solving				/, Project	
Name of Lecturer(s)								

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination		1	40
Final Examination		1	50
Assignment		4	10

Recommended or Required Reading

1 B.E.A. Saleh, M.C.Teich: Fundamentals of Photonics

Week	Weekly Detailed Course Contents					
1	Theoretical	Lightwaves and Paraxial solution of Maxwell s equations				
2	Theoretical	Ray Optics				
3	Theoretical	Wave Optics				
4	Theoretical	Fourier Optics				
5	Theoretical	General overview of Laser beam propagation through optical systems				
6	Theoretical	Interaction of Lightwaves with dielectric materials				
7	Theoretical	Elektromagnetic optics				
8	Theoretical	Midterm Exam				
9	Theoretical	Polarization and Stokes vectors				
10	Theoretical	Statistical optics				
11	Theoretical	Photon optics				
12	Theoretical	Photon optics (cont.)				
13	Theoretical	Characteristic of Laser Light and pulsed lasers				
14	Theoretical	Optical devices				
15	Theoretical	Optical devices				
16	Theoretical	Final Exam				

Workload Calculation

Activity	Quantity	Quantity Preparation		Total Workload	
Lecture - Theory	14	5	3	112	
Assignment	4	12	3	60	
Midterm Examination	1	9	3	12	

					Course information i on		
Final Examination	1		13	3	16		
Total Workload (Hours)							
		[Total Workload (Hours) / 25*] = ECTS	8		
*25 hour workload is accepted as 1 ECTS							

Learn	ng Outcomes					
1	To have the ability of obtaining beam solution of Maxwell Equations and its applications					
2	Understand the ray, wave, and particle descriptions of light.					
3	To be able to describe lightwave-dielectric materia interaction					
4	Understand the principles of ray optics, wave optics, Fourier optics, electromagnetics and photonoptics					
5	Comprehend refraction and reflection					
6	Understand the basic of optical devices					

Programme Outcomes (Electrical and Electronics Engineering Master)

1	Developing and intensifying knowledge that requires expertise in the area of Electrical-Electronics Engineering, and gaining the skills necessary to analyze and solve problems using this knowledge
2	Grasping the inter-disciplinary interaction related to Electrical-Electronics Engineering, interpreting and forming new types of knowledge by combining the knowledge from Electrical-Electronics Engineering and the knowledge from various other disciplines
3	Developing new approaches to solve the complex problems arising in Electrical-Electronics Engineering, coming up with solutions while taking responsibility and carrying out a specific study independently
4	Assessing the knowledge and skill gained in the area of Electrical-Electronics Engineering with a critical view
5	Transferring the current developments and one's own work in Electrical-Electronics Engineering, to other groups in written, oral and visual forms
6	The ability to control the collecting, interpreting, practicing and announcing processes of the Electrical-Electronics Engineering related to data taking into consideration scientific, cultural and ethical values and the ability to teach these values to others
7	Developing application plans concerning the subjects related to Electrical-Electronics Engineering and the ability to evaluate the end results of these plans within the frame of quality processes

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5	L6
P1	4	4	4	4	4	4
P2	4	4	4	4	4	4
P3	4	4	4	4	4	4
P4	4	4	4	4	4	4
P5	4	4	4	4	4	4
P6	4	4	4	4	4	4
P7	4	4	4	4	4	4