

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Random Variables & Stochastic Process							
Course Code		EEE531		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit 8		Workload	200 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course		The main objective of this course is to understand the mathematical theory and to gain experience about the application areas of random variables and random processes.							
Course Content		Review of probability theory: Conditional probability and independence, random variables, probability distribution and density, function of random variables, expectation and conditional expectation with their properties. Random processes: Continuous and discrete-time random processes, correlation function and power spectrum, Gaussian and Poisson processes, continuity of random processes, stationarity and wide-sense stationarity, white noise, ergodicity.							
Work Placeme	nt	N/A							
Planned Learning Activities and Teaching Methods			Explanation Problem So		tion), Discuss	sion, Case St	udy, Individual Stu	ıdy,	
Name of Lecturer(s)									

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination		1	30
Final Examination		1	40
Assignment		6	30

Recommended or Required Reading

1	Probability, Random Variables and Stochastic Processes, by Athanasios Papoulis and S. Unnikrishna Pillai, 4th Edition, McGraw Hill 2002
2	Probability, Statistics and Random Processes for Electrical Engineering, by Alberto Leon-Garcia, 3rd Edition, Pearson, 2008.
3	Introduction to Probability and Random Processes, by Jorge I. Aunon and V. Chandrasekar, McGraw Hill, 1997

Week	Weekly Detailed Cour	se Contents				
1	Theoretical	Basic Concepts of Probability: Axiomatic definition, use of set concepts, conditional and joint probability.				
2	Theoretical	Basic Concepts of Probability: Independence, Bayes Rule, Total Probability.				
3	Theoretical	Random Variables: Basic concepts, The random variable concept, Distribution function, Density function.				
4	Theoretical	Random Variables: The Gaussian random variable, other distribution and density examples, Conditional distribution and density functions				
5	Theoretical	Operation on One Random Variable: Expectation, Functions of a Random Variable.				
6	Theoretical	Operation on One Random Variable: Transformations of a random variable, Computer generation of one random variable.				
7	Theoretical	Multiple Random Variables				
8	Intermediate Exam	Midterm				
9	Theoretical	Operations on Multiple Random Variables				
10	Theoretical	Vector Random Variables				
11	Theoretical	Operations on Vector Random Variables				
12	Theoretical	Random Processes: The random process concept, Stationarity and independence, Correlation functions.				
13	Theoretical	Random Processes: Measurement of correlation functions, Gaussian random processes, Poisson random process				
14	Theoretical	Spectral Characteristics of Random Processes				
15	Theoretical	Spectral Characteristics of Random Processes				
16	Final Exam	Final Exam				

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	3	3	84
Assignment	6	3	3	36
Individual Work	14	4	0	56
Midterm Examination	1	9	3	12
Final Examination	1	9	3	12
	200			
	8			

*25 hour workload is accepted as 1 ECTS

Learning Outcomes

1	To identify and formulate the fundamental probability density and distribution functions, as well as functions of random variables.
2	To explain the concepts of expectation and conditional expectation, and describe their properties.
3	To understand and analyse continuous and discrete-time random processes
4	To explain the concepts of stationarity and wide-sense stationarity, and appreciate their significance
5	To employ the theory of stochastic processes to analyse linear systems
6	Apply the above knowledge to solve basic problems in filtering, prediction and smoothing

Programme Outcomes (Electrical and Electronics Engineering Master)

1	Developing and intensifying knowledge that requires expertise in the area of Electrical-Electronics Engineering, and gaining the skills necessary to analyze and solve problems using this knowledge
2	Grasping the inter-disciplinary interaction related to Electrical-Electronics Engineering, interpreting and forming new types of knowledge by combining the knowledge from Electrical-Electronics Engineering and the knowledge from various other disciplines
3	Developing new approaches to solve the complex problems arising in Electrical-Electronics Engineering, coming up with solutions while taking responsibility and carrying out a specific study independently
4	Assessing the knowledge and skill gained in the area of Electrical-Electronics Engineering with a critical view
5	Transferring the current developments and one's own work in Electrical-Electronics Engineering, to other groups in written, oral and visual forms
6	The ability to control the collecting, interpreting, practicing and announcing processes of the Electrical-Electronics Engineering related to data taking into consideration scientific, cultural and ethical values and the ability to teach these values to others
7	Developing application plans concerning the subjects related to Electrical-Electronics Engineering and the ability to evaluate the end results of these plans within the frame of quality processes

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5	L6
P1	4	4	4	4	4	4
P2	4	4	4	4	4	4
P3	4	4	4	4	4	4
P4	4	4	4	4	4	4
P5	4	4	4	4	4	4
P6	4	4	4	4	4	4
P7	4	4	4	4	4	4

