

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Adaptive Sign	al Processing						
Course Code		EEE542		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit 8		Workload	200 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the C	Course		gn. Analyzes	of the perfo	ormances ar			ge qualification in methods and of t	
Course Content		Processes, M Wiener-Hopf I	oving Average Equations), FI is, Adaptive F	e (MA), Auto R, IIR, Cau	o-regressive sal IIR Wien	(AR) and ARN er Filters, Itera	A processes tive methods	tion), Filtering the s, Wiener Filtering for the solution of ariations, RLS, K	g (Solving of Wiener
Work Placement		N/A							
	Planned Learning Activities and Teaching Methods								
Planned Learning	Activities	and Teaching	Methods		<i>i</i>	ition), Demonst al Study, Probl	,	ssion, Case Stuc	ly, Projec

Assessment Methods and Criteria

Method	Quantity	Percentage (%)
Midterm Examination	1	30
Final Examination	1	40
Project	1	30

Recommended or Required Reading

1 Monson H. Hayes, Statistical Digital Signal Processing and Modelling, John Wiley & Sons, 1996.

2 Simon Haykin, Adaptive Filter Theory, Prentice Hall, 1996.

Week	Weekly Detailed Cour	e Contents					
1	Theoretical	Review of Random Processes					
2	Theoretical	Mean Square Estimation Techniques, (Linear MSE estimation, optimal estimation)					
3	Theoretical	Filtering the Random Processes					
4	Theoretical	Moving Average (MA), Auto-regressive (AR) and ARMA processes					
5	Theoretical	Wiener Filtering (Solving Wiener-Hopf Equations)					
6	Theoretical	FIR, IIR, Causal IIR Wiener Filters					
7	Theoretical	Iterative methods for the solution of Wiener-Hopf Equations					
8	Intermediate Exam	Midterm Exam					
9	Theoretical	Adaptive Filters					
10	Theoretical	LMS Filter					
11	Theoretical	FIR, IIR , Normalized and other variations					
12	Theoretical	RLS					
13	Theoretical	Kalman Filters					
14	Theoretical	Uygulamalar					
15	Theoretical	Uygulamalar					
16	Final Exam	Final Exam					

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	14	5	3	112
Project	1	49	3	52
Midterm Examination	1	10	3	13

				000136 111011100011 011
Final Examination	1	20	3	23
		Тс	otal Workload (Hours)	200
		[Total Workload (Hours) / 25*] = ECTS	8
*25 hour workload is accepted as 1 ECTS				

Learr	ning Outcomes
1	For a given linear adaptive estimation problem and its requirements, choose appropriate adaptation methods.
2	For a given linear adaptive estimation problem and its requirements, choose appropriate filter length.
3	For a given linear adaptive estimation problem, identify relevant signals, express adaptation and filtering operations.
4	Write adaptive filtering codes and compare the performances of adaptation methods.
5	Correctly choose or decide on the strategy about the step size parameter according to the nature of the problem and/or computational environment.
6	Propose ways to reduce computational load of algorithms.
7	Propose ways to improve numerical stability of algorithms.

Programme Outcomes (Electrical and Electronics Engineering Master)

1	Developing and intensifying knowledge that requires expertise in the area of Electrical-Electronics Engineering, and gaining the skills necessary to analyze and solve problems using this knowledge
2	Grasping the inter-disciplinary interaction related to Electrical-Electronics Engineering, interpreting and forming new types of knowledge by combining the knowledge from Electrical-Electronics Engineering and the knowledge from various other disciplines
3	Developing new approaches to solve the complex problems arising in Electrical-Electronics Engineering, coming up with solutions while taking responsibility and carrying out a specific study independently
4	Assessing the knowledge and skill gained in the area of Electrical-Electronics Engineering with a critical view
5	Transferring the current developments and one's own work in Electrical-Electronics Engineering, to other groups in written, oral and visual forms
6	The ability to control the collecting, interpreting, practicing and announcing processes of the Electrical-Electronics Engineering related to data taking into consideration scientific, cultural and ethical values and the ability to teach these values to others
7	Developing application plans concerning the subjects related to Electrical-Electronics Engineering and the ability to evaluate the end results of these plans within the frame of quality processes

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5	L6	L7
P1	4	4	4	4	4	4	4
P2	4	4	4	4	4	4	4
P3	4	4	4	4	4	4	4
P4	4	4	4	4	4	4	4
P5	4	4	4	4	4	4	4
P6	4	4	4	4	4	4	4
P7	4	4	4	4	4	4	4

