

#### AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

| Course Title                                                          | Multiresolution                                                                                                                                             | n Signal Proce | ssing                                                                                                                        |                |                                |                |               |                    |      |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------|----------------|---------------|--------------------|------|
| Course Code                                                           | EEE543                                                                                                                                                      |                | Couse Level                                                                                                                  |                | Second Cycle (Master's Degree) |                |               |                    |      |
| ECTS Credit 8                                                         | Workload                                                                                                                                                    | 200 (Hours)    | Theory                                                                                                                       | 1              | 3                              | Practice       | 0             | Laboratory         | 0    |
| Objectives of the Course To learn the following series, 5) Time-frequ |                                                                                                                                                             |                | : 1) Sig<br>nalysis :                                                                                                        | nal e<br>and i | xpansions,<br>epresentati      | 2) Block trans | forms, 3) Fil | ter banks, 4) Wave | elet |
| Course Content                                                        | Fundamentals of signal decompositions. Time-frequency representations. Filter banks. Wavelets. Efficient algorithms. Signal compression and subband coding. |                |                                                                                                                              |                |                                |                |               |                    |      |
| Work Placement N/A                                                    |                                                                                                                                                             |                |                                                                                                                              |                |                                |                |               |                    |      |
| Planned Learning Activities and Teaching Methods                      |                                                                                                                                                             |                | Explanation (Presentation), Demonstration, Discussion, Case Study, Project<br>Based Study, Individual Study, Problem Solving |                |                                |                | /, Project    |                    |      |
| Name of Lecturer(s)                                                   |                                                                                                                                                             |                |                                                                                                                              |                |                                |                |               |                    |      |

## Assessment Methods and Criteria

| Method              | Quantity | Percentage (%) |
|---------------------|----------|----------------|
| Midterm Examination | 1        | 30             |
| Final Examination   | 1        | 40             |
| Project             | 1        | 30             |

### **Recommended or Required Reading**

1 Ali Akansu Paul Haddad, Multiresolution Signal Decomposition: Transforms, Subbands, and Wavelets, 2nd ed., 2000

| Week | Neekly Detailed Course Contents |                                              |  |  |  |  |  |
|------|---------------------------------|----------------------------------------------|--|--|--|--|--|
| 1    | Theoretical                     | Introduction                                 |  |  |  |  |  |
| 2    | Theoretical                     | Orthogonal Transforms                        |  |  |  |  |  |
| 3    | Theoretical                     | Orthogonal Transforms                        |  |  |  |  |  |
| 4    | Theoretical                     | Theory of Subband Decomposition              |  |  |  |  |  |
| 5    | Theoretical                     | Theory of Subband Decomposition              |  |  |  |  |  |
| 6    | Theoretical                     | Filter Bank Families: Design and Performance |  |  |  |  |  |
| 7    | Theoretical                     | Filter Bank Families: Design and Performance |  |  |  |  |  |
| 8    | Intermediate Exam               | Midterm Exam                                 |  |  |  |  |  |
| 9    | Theoretical                     | Time-Frequency Representations               |  |  |  |  |  |
| 10   | Theoretical                     | Time-Frequency Representations               |  |  |  |  |  |
| 11   | Theoretical                     | Time-Frequency Representations               |  |  |  |  |  |
| 12   | Theoretical                     | Wavelet Transform                            |  |  |  |  |  |
| 13   | Theoretical                     | Wavelet Transform                            |  |  |  |  |  |
| 14   | Theoretical                     | Wavelet Transform                            |  |  |  |  |  |
| 15   | Theoretical                     | Applications                                 |  |  |  |  |  |
| 16   | Final Exam                      | Final Exam                                   |  |  |  |  |  |

# **Workload Calculation**

| Activity                                | Quantity | Preparation |    | Duration | Total Workload |  |
|-----------------------------------------|----------|-------------|----|----------|----------------|--|
| Lecture - Theory                        | 14       |             | 5  | 3        | 112            |  |
| Project                                 | 1        |             | 49 | 3        | 52             |  |
| Midterm Examination                     | 1        |             | 10 | 3        | 13             |  |
| Final Examination                       | 1        |             | 20 | 3        | 23             |  |
|                                         | 200      |             |    |          |                |  |
|                                         | 8        |             |    |          |                |  |
| *25 hour workload is accepted as 1 ECTS |          |             |    |          |                |  |



| Learni | ing Outcomes                                                                                              |
|--------|-----------------------------------------------------------------------------------------------------------|
| 1      | To learn Basics of data compression; JPEG,                                                                |
| 2      | To learn Orthonormal, biorthogonal and overcomplete signal expansions; DCT, DST, MDCT,                    |
| 3      | To learn Transform coding, filter banks, subband coding, transmultiplexers,                               |
| 4      | To learn Wavelet series,                                                                                  |
| 5      | To learn Short time Fourier transformation, continuous wavelet transformation, Wigner-Ville distribution. |

### Programme Outcomes (Electrical and Electronics Engineering Master)

| 1 | Developing and intensifying knowledge that requires expertise in the area of Electrical-Electronics Engineering, and gaining the skills necessary to analyze and solve problems using this knowledge                                                                 |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Grasping the inter-disciplinary interaction related to Electrical-Electronics Engineering, interpreting and forming new types of knowledge by combining the knowledge from Electrical-Electronics Engineering and the knowledge from various other disciplines       |
| 3 | Developing new approaches to solve the complex problems arising in Electrical-Electronics Engineering, coming up with solutions while taking responsibility and carrying out a specific study independently                                                          |
| 4 | Assessing the knowledge and skill gained in the area of Electrical-Electronics Engineering with a critical view                                                                                                                                                      |
| 5 | Transferring the current developments and one's own work in Electrical-Electronics Engineering, to other groups in written, oral and visual forms                                                                                                                    |
| 6 | The ability to control the collecting, interpreting, practicing and announcing processes of the Electrical-Electronics Engineering related to data taking into consideration scientific, cultural and ethical values and the ability to teach these values to others |
| 7 | Developing application plans concerning the subjects related to Electrical-Electronics Engineering and the ability to evaluate                                                                                                                                       |

the end results of these plans within the frame of quality processes

# Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

|    | L1 | L2 | L3 | L4 | L5 |
|----|----|----|----|----|----|
| P1 | 4  | 4  | 4  | 3  | 4  |
| P2 | 4  | 4  | 4  | 4  | 4  |
| P3 | 4  | 4  | 3  | 3  | 3  |
| P4 | 4  | 3  | 3  | 3  | 4  |
| P5 | 4  | 4  | 3  | 4  | 3  |
| P6 | 4  | 3  | 4  | 4  | 4  |
| P7 | 4  | 4  | 3  | 4  | 4  |