

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Power Sys		Power System	ns Economy							
Course Code		EEE552		Couse Level		Second Cycle (Master's Degree)				
ECTS Credit	8	Workload	200 (Hours)	Theory		3	Practice	0	Laboratory	0
Objectives of the Course This course aims to introduce and explore a number of engineering operating and controlling power generation and transmission systemeters.						omic aspects for p	olanning,			
Course Content		methods of so	olution, dynam	ic progra	ammi	ng, transm	ission system	effects, the	conomic dispatch a unit commitment p ques, interchange	oroblem
Work Placement N/A										
Planned Learning Activities and Teaching Methods					tion), Demons al Study, Probl		ussion, Case Stud	y, Project		
Name of Lecturer(s) Assoc. Prof. Atilla DÖNÜK										
								,, ·		

Assessment Methods and Criteria

Method	Quantity	Percentage (%)
Midterm Examination	1	20
Final Examination	1	20
Assignment	3	20
Project	2	40

Recommended or Required Reading

1 Power Generation, Operation and Control, Allen J. Wood, Bruce F. Wollenberg (Wiley&Sons)

Week	Weekly Detailed Cour	e Contents				
1	Theoretical	Giriş: Ekonomik önem				
2	Theoretical	Characteristics of power generation units				
3	Theoretical	Economic dispatch : Definition of the problem and thermal system dispatching				
4	Theoretical	Economic dispatch: Methods of solution				
5	Theoretical	Transmission system effects: The power flow problem and its solution				
6	Theoretical	Transmission system effects: Transmission losses				
7	Theoretical	Unit commitment: Constraints				
8	Theoretical	Unit commitment: Solution methods				
9	Intermediate Exam	Midterm Exam				
10	Theoretical	Hydrothermal Coordination: Scheduling problems, plant models				
11	Theoretical	Hydrothermal Coordination: Solution methods				
12	Theoretical	Interchange of power and energy : Economy interchange				
13	Theoretical	Interchange of power and energy : Types of interchange				
14	Theoretical	Interchange of power and energy : Power pools, transmission effects				
15	Theoretical	Term Project Presentations				
16	Final Exam	Final Exam				

	.
Workload	Calculation

Activity	Quantity	Preparation	Duration	Total Workload	
Lecture - Theory	13	7	3	130	
Assignment	3	6	2	24	
Project	2	10	3	26	
Midterm Examination	1	7	2	9	

Final Examination	1	8	3	11
		T	otal Workload (Hours)	200
		[Total Workload	(Hours) / 25*] = ECTS	8
*25 hour workload is accepted as 1 ECTS				

Learning	Outcomes
----------	----------

Leann	
1	Understand power generation systems, their operation in an economic mode, and their control
2	Understand the important terminal characteristics for thermal and hydroelectric power generation systems
3	Learn mathematical optimization methods and apply them to practical operating problems
4	Gain experience in methods that are used in modern control systems for power generation systems
5	Get familiar with the changes in the system development patterns, regulatory structures, and economics.

Programme Outcomes (Electrical and Electronics Engineering Master)

-	
1	Developing and intensifying knowledge that requires expertise in the area of Electrical-Electronics Engineering, and gaining the skills necessary to analyze and solve problems using this knowledge
2	Grasping the inter-disciplinary interaction related to Electrical-Electronics Engineering, interpreting and forming new types of knowledge by combining the knowledge from Electrical-Electronics Engineering and the knowledge from various other disciplines
3	Developing new approaches to solve the complex problems arising in Electrical-Electronics Engineering, coming up with solutions while taking responsibility and carrying out a specific study independently
4	Assessing the knowledge and skill gained in the area of Electrical-Electronics Engineering with a critical view
5	Transferring the current developments and one's own work in Electrical-Electronics Engineering, to other groups in written, oral and visual forms
6	The ability to control the collecting, interpreting, practicing and announcing processes of the Electrical-Electronics Engineering related to data taking into consideration scientific, cultural and ethical values and the ability to teach these values to others
7	Developing application plans concerning the subjects related to Electrical-Electronics Engineering and the ability to evaluate the end results of these plans within the frame of quality processes

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5	
P1	4	4	4	4	4	
P2	4	4	4	4	4	1
P3	4	4	4	4	4	1
P4	4	4	4	4	4	1
P5	4	4	4	4	4	1
P6	4	4	4	4	4	1
P7	4	4	4	4	4]