

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Biomedical In	strumentation						
Course Code	EEE563		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit 8	Workload	200 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course	of the Course This course aims to present robust control analysis and design methods.							
Course Content Biopotentials, production and process of measurement methods, ECG, EMG, EEG X-rays, CT, MRI, ultrasound.								nniques:
Work Placement N/A								
Planned Learning Activities and Teaching Methods					tion), Demonst al Study, Probl		ussion, Case Stud	y, Project
Name of Lecturer(s)								

Assessment Methods and Criteria						
Method	Quantity	Percentage (%)				
Midterm Examination	1	30				
Final Examination	1	30				
Assignment	4	20				
Project	1	20				

Reco	mmended or Required Reading
1	Ders notları ve internet yayınları
2	John G. Webster, Medical Instrumentation – Application and Design, 4th Edition, John Wiley and Sons Inc., 2009.
3	Gail D. Baura, System Theory and Practical Applications of Biomedical Signals, Wiley-IEEE Press, 2002.
4	Willis J. Tompkins, ED. Biomedical Signal Processing, Prentice-Hall, 1993.

Week	Weekly Detailed Course Contents						
1	Theoretical	Introduction: Human—Instrumentation system					
2	Theoretical	Biomedical signals and related physical quantities					
3	Theoretical	Bioelectric concept and biopotentials					
4	Theoretical	Biomedical sensors and transducers					
5	Theoretical	Biopotential amplifiers, Noise reduction methods in biological signals					
6	Theoretical	Biosignal processing, biomedical instrumentation and safety					
7	Theoretical	EKG, EEG, EMG, EOG signals					
8	Intermediate Exam	Midterm Exam					
9	Theoretical	Blood Flow and Pressure Measurement Methods, electro cardiogram equipments					
10	Theoretical	Respiratory system and patient treatment equipment					
11	Theoretical	Nuclear radiation, dose, and medical applications					
12	Theoretical	Medical imaging I: X-rays and CT					
13	Theoretical	Medical Imaging II: ultrasound					
14	Theoretical	Medical Imaging III: Nuclear medicine and Magnetic Resonance Imaging					
15	Theoretical	Some image processing algorithms, Biomedical Optics and applications					
16	Final Exam	Final Exam					

Workload Calculation						
Activity	Quantity	Preparation	Duration	Total Workload		
Lecture - Theory	14	4	3	98		
Assignment	4	10	3	52		
Project	1	11	3	14		
Midterm Examination	1	15	3	18		

Final Examination	1		15	3	18	
	Total Workload (Hours) 200				200	
[Total Workload (Hours) / 25*] = ECTS 8					8	
*25 hour workload is accepted as 1 ECTS						

Learning Outcomes

- 1 Learn the fundamental principles of biomedical systems and how to obtain human biological electrical signals
- 2 Learn how to design and establish biomedical devices using cell, muscle, heart and circulation parameters
- 3 Acquire information about monitoring systems like X-rays, CT, MRI, etc. used in modern medicine
- 4 To be able to understand the fundamental principles of biomedical systems
- 5 To be able to discuss the fundamental principles of biomedical systems

Programme Outcomes (Electrical and Electronics Engineering Master)

- Developing and intensifying knowledge that requires expertise in the area of Electrical-Electronics Engineering, and gaining the skills necessary to analyze and solve problems using this knowledge
- Grasping the inter-disciplinary interaction related to Electrical-Electronics Engineering, interpreting and forming new types of knowledge by combining the knowledge from Electrical-Electronics Engineering and the knowledge from various other disciplines
- 3 Developing new approaches to solve the complex problems arising in Electrical-Electronics Engineering, coming up with solutions while taking responsibility and carrying out a specific study independently
- 4 Assessing the knowledge and skill gained in the area of Electrical-Electronics Engineering with a critical view
- 5 Transferring the current developments and one's own work in Electrical-Electronics Engineering, to other groups in written, oral and visual forms
- The ability to control the collecting, interpreting, practicing and announcing processes of the Electrical-Electronics Engineering related to data taking into consideration scientific, cultural and ethical values and the ability to teach these values to others
- Developing application plans concerning the subjects related to Electrical-Electronics Engineering and the ability to evaluate the end results of these plans within the frame of quality processes

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2:Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	4	4	4	4	4
P2	4	4	4	4	4
P3	4	4	4	4	4
P4	4	4	4	4	4
P5	4	4	4	4	4
P6	4	4	4	4	4
P7	4	4	4	4	4

