

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title Experimental Superconductiv			ivity						
Course Code	EEE564		Couse Level		Second Cycle (Master's Degree)				
ECTS Credit 8	Workload	200 (Hours)	Theory 3		Practice	0	Laboratory	0	
Objectives of the Course This course aims to teach ex				ental s	upercondu	uctivity.			
Course Content	iations, Magne ivity, BSCCO, y, Meissner ef (experimental	etism in YBCO, fect, Su work w	matte prepa perco vill be	r, magneti aration and nducting n performed	ic materials, S I characterizat nagnets, supe in the Electric	uperconduct ion of bulk H rconducting al Measurer	tivity, High Tc High Tc materials cables, superconc nent Lab).	ducting	
Work Placement N/A									
Planned Learning Activities and Teaching Methods			Explan Based	ation Study	(Presentat	tion), Demons al Study, Probl	tration, Disc em Solving	ussion, Case Stud	y, Project
Name of Lecturer(s)									

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	30	
Final Examination	1	35	
Laboratory	4	35	

Recommended or Required Reading

1	Serway R. A., Physics for Scientists and Engineers, 3rd ed. (updated version), Saunders College Publishing, International e 1992	эd.,
2	Rose-Innes A.C., Rhoderick E. H., Introduction to Superconductivity, 2nd ed., Pergamon, GBR, 1980	
3	Narlikar A. V., High Temperature Superconductivity 1: Materials, Springer-Verlag, Berlin, 2004	
4	Narlikar A. V., High Temperature Superconductivity 2: Engineering Applications, Springer-Verlag, Berlin, 2004	
5	Lecture notes, lab instructions, and Internet sources	

Week	Weekly Detailed Cours	se Contents
1	Theoretical	Maxwell's equations and Magnetism in matter, magnetic materials (Revision)
2	Theoretical	Introduction to superconductivity, Perfect Diamagnetism and Meissner effect, High Tc superconductivity
3	Theoretical	Type-I Superconductivity
4	Theoretical	Type-II Superconductivity
5	Theoretical	Superconducting material and cable production methods, doping mechanism and structural characterization in high Tc superconductivity (XRD, SEM, RBS, etc.)
6	Theoretical	Electrical characterization of high Tc superconductors
7	Practice	Experiment 1: Production of high Tc superconductors (YBCO)
8	Intermediate Exam	Midterm Exam
9	Practice	Experiment 2: Production of high Tc superconductors (BSCCO)
10	Practice	Experiment 1&2 continuing
11	Practice	Experiment 3: Electrical characterization of High Tc superconductors (YBCO)
12	Practice	Experiment 4: Electrical characterization of High Tc superconductors (BSCCO)
13	Practice	Experiment 3&4 continuing + structural characterization
14	Practice	Project work (experimental)
15	Practice	Project work (experimental)
16	Final Exam	Final Exam (project)

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload			
Lecture - Theory	6	5	3	48			
Project	2	12	3	30			
Laboratory	6	12	3	90			

Course Information For	
	n

Midterm Examination 1 12 2 14							
Final Examination115318							
	Total Workload (Hours) 200						
[Total Workload (Hours) / 25*] = ECTS 8							
*25 hour workload is accepted as 1 ECTS							

Learn	ing Outcomes	
1	Can understand the magnetism in matter	
2	Can comprehend the nature of superconductivity	
3	Can understand the structural and electrical properties of	high Tc superconductivity
4	Can produce and perform the structural and electrical chaeses experimentally	aracterizations of superconducting high Tc bulk materials
5	Can understand the superiority of high Tc superconductive	ity in engineering applications

Programme Outcomes (Electrical and Electronics Engineering Master)

1	Developing and intensifying knowledge that requires expertise in the area of Electrical-Electronics Engineering, and gaining the skills necessary to analyze and solve problems using this knowledge
2	Grasping the inter-disciplinary interaction related to Electrical-Electronics Engineering, interpreting and forming new types of knowledge by combining the knowledge from Electrical-Electronics Engineering and the knowledge from various other disciplines
3	Developing new approaches to solve the complex problems arising in Electrical-Electronics Engineering, coming up with solutions while taking responsibility and carrying out a specific study independently
4	Assessing the knowledge and skill gained in the area of Electrical-Electronics Engineering with a critical view
5	Transferring the current developments and one's own work in Electrical-Electronics Engineering, to other groups in written, oral and visual forms
6	The ability to control the collecting, interpreting, practicing and announcing processes of the Electrical-Electronics Engineering related to data taking into consideration scientific, cultural and ethical values and the ability to teach these values to others
7	Developing application plans concerning the subjects related to Electrical-Electronics Engineering and the ability to evaluate the end results of these plans within the frame of quality processes

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	4	4	4	4	4
P2	4	4	4	4	4
P3	4	4	4	4	4
P4	4	4	4	4	4
P5	4	4	4	4	4
P6	4	4	4	4	4
P7	4	4	4	4	4