

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title	Deep L	earning						
Course Code	EEE57	EEE574		_evel	Second Cycle (Master's Degree)			
ECTS Credit	3 Worklo	ad 201 (Hours)	Theory	2	Practice	2	Laboratory	0
Objectives of the Course To teach students technique applications; Demonstrate and artificial intelligence.								
Course Content	Artificia Machir	al Neural Network al Intelligence ne Learning and Multi Layer Perc	eptrons					
Work Placement	N/A							
Planned Learning Activities and Teaching Methods			ition (Presentat Study, Individua			ussion, Case Stud	ly, Project	
Name of Lecturer(s)	Assoc.	Prof. Coşkun DENİZ	-					

Assessment Methods and Criteria	
Method	Quantity

Method	Quantity	Percentage (%)	
Assignment		3	30
Term Assignment		1	70

Recommended or Required Reading

1	Prof. Dr. Ercan Öztemel, 2003, "Yapay Sinir Ağları", Papatya Yayıncılık, 238s. (Ders Kitabı).
2	Prof. Dr. Çetin Elmas, 2007, "Yapay Zeka Uygulamaları", Seçkin Yayıncılık, 425 s.
3	Haykin, Simon, 1998, "Neural Networks: A Comprehensive Fo-undation (2nd Edition)", Prentice-Hall, 842p.

Week	Weekly Detailed Course Contents						
1	Theoretical & Practice	Acquaintance, Motivation and Importance of the course, Introduction to Artificial Neural Networks ANN): Definition and Importance of ANN. ANN Tools and Software. Application Areas and Job Opportunities.					
2	Theoretical & Practice	Artificial Intelligence (AI): What is Artificial Intelligence? Importance, Objectives, Subjects, Application Areas, Research Areas, AI Languages.					
3	Theoretical & Practice	Fundamentals of ANN: Artificial Neuron and components. Types of Activation Functions. Biological Neuron. Biological Nervous System. Comparison of human brain and ANN.					
4	Theoretical & Practice	lachine Learning.Supervised and Unsupervised Learning. Estimation, Classification and lustering using ANN.					
5	Theoretical & Practice	Single Layer Perceptrons: Examples of Perceptron ve ADALINE.					
6	Theoretical & Practice	KOR Problem and need for Multi Layer Models.					
7	Theoretical & Practice	Multi Layer Perceptrons (MLP).					
8	Intermediate Exam	MidTerm Exam					
9	Intermediate Exam	MidTerm Exam					
10	Theoretical & Practice	Feed Forward Networks.					
11	Theoretical & Practice	Back propagation Networks.					
12	Theoretical & Practice	RBF (Radial Basis Function) Neural Networks.					
13	Theoretical & Practice	LVQ (Learning Vector Quantization) Neural Networks.					
14	Theoretical & Practice	SOM (Self-Orginizing Maps) Neural Networks.					
15	Theoretical & Practice	Project presentation					
16	Final Exam	Final Exam					

Workload Calculation

Activity	Quantity	Preparation	Duration	Total Workload
Lecture - Theory	16	6	4	160
Assignment	3	2	5	21

Courses	Informatio	In Enviro
Course		л готп

Project	1		10	10	20
Total Workload (Hours)				201	
[Total Workload (Hours) / 25*] = ECTS 8				8	
*25 hour workload is accepted as 1 ECTS					

Learning Outcomes

1	To gain the ability to apply the basic concepts, techniques, mathematics and software infrastructure of artificial neural networks.
2	To recognize and use the ANN tools that are widely used today. To obtain the basic information necessary to create ANN libraries in new programming languages (such as Java, C #, python). To be able to develop projects in real life such as Estimation, Classification and Recognition.
3	To be able to develop intelligent software; to understand how machines can learn; To be able to make effective ANN designs.
4	Being able to follow the research topics developing in the field of Image Processing; To be able to make presentations by preparing short seminars on this subject.
5	To gain experience in reading and writing articles.

Programme Outcomes (Electrical and Electronics Engineering Master)

Developing and intensifying knowledge that requires expertise in the area of Electrical-Electronics Engineering, and gaining the skills necessary to analyze and solve problems using this knowledge
Grasping the inter-disciplinary interaction related to Electrical-Electronics Engineering, interpreting and forming new types of knowledge by combining the knowledge from Electrical-Electronics Engineering and the knowledge from various other disciplines
Developing new approaches to solve the complex problems arising in Electrical-Electronics Engineering, coming up with solutions while taking responsibility and carrying out a specific study independently
Assessing the knowledge and skill gained in the area of Electrical-Electronics Engineering with a critical view
Transferring the current developments and one's own work in Electrical-Electronics Engineering, to other groups in written, oral and visual forms
The ability to control the collecting, interpreting, practicing and announcing processes of the Electrical-Electronics Engineering related to data taking into consideration scientific, cultural and ethical values and the ability to teach these values to others
Developing application plans concerning the subjects related to Electrical-Electronics Engineering and the ability to evaluate the end results of these plans within the frame of quality processes

Contribution of Learning Outcomes to Programme Outcomes 1: Very Low, 2: Low, 3: Medium, 4: High, 5: Very High

	L1	L2	L3	L4	L5
P1	3	4	3	3	4
P2	3	4	3	3	4
P3	3	4	5	3	4
P4	3	3	5	3	4
P5	4	5	5	4	4
P6	3	4	4	3	4
P7	4	3	3	4	4

