

AYDIN ADNAN MENDERES UNIVERSITY COURSE INFORMATION FORM

Course Title		Production Systems Management		ement					
Course Code		LYM523		Couse Level		Second Cycle (Master's Degree)			
ECTS Credit	5	Workload	127 (Hours)	Theory	3	Practice	0	Laboratory	0
Objectives of the Course		To teach how	to design proc	duction sys	tems				
Course Content		production systems, types, production system design, design approaches and methodologies, simulation							
Work Placement		N/A							
Planned Learning Activities and Teaching Methods		Explanatio	on (Presenta	tion), Discussi	on, Individual	Study			
Name of Lecturer(s)									

Assessment Methods and Criteria

Method	Quantity	Percentage (%)	
Midterm Examination	1	40	
Final Examination	1	60	

Recommended or Required Reading

4	Richard E. Gustavson 2010 Production Systems Engineering: Cost	t and Performance Optimization The McGraw-Hill
I	Companies, Inc.ISBN: 9780071701884	

Week	Weekly Detailed Cour	se Contents
1	Intermediate Exam	manufacturing methods
2	Intermediate Exam	facility layouts
3	Intermediate Exam	production types
4	Intermediate Exam	production machines and equipments
5	Intermediate Exam	intralogistics systems
6	Intermediate Exam	lean approach 1
7	Intermediate Exam	lean approach 2
8	Intermediate Exam	lean approach 3
9	Intermediate Exam	Midterms
10	Intermediate Exam	Midterms
11	Theoretical	flexible production systems
12	Theoretical	robotized production
13	Theoretical	additive manufacturing
14	Theoretical	simulation and measurement of facility 1
15	Theoretical	simulation and measurement of facility 2
16	Final Exam	Finals

Workload Calculation

Activity	Quantity		Preparation	Duration		Total Workload
Lecture - Theory	13		0	3		39
Reading	13		0	2		26
Midterm Examination	1		25	1		26
Final Examination	1		35	1		36
	127					
	5					
*25 hour workload is accepted as 1 ECTS						

Learning Outcomes

- 1 Become able to design dicrete manufacturing systems
- 2 To be able to manage factories

3	The function of production in the enterprise, production system, comprehend the systems of the production factors				
4	Making optimum decisions related to production by the methods such as assignment, work load and linear programming				
5	To identify and to interpret the classical and neo-classical decision subjects and the solution alternatives in production management.				

Progr	amme Outcomes (Logistics Management Interdisciplinary Master)
1	Being able to contribute to the institution the participant works for and the logistics sector by the use of the knowledge and abilities gained during the education period; and manage change in the institution and the sector;
2	Reaching a competency about contemporary business and technology applications in the area of logistics and supply chain management and analysis and strategy development methods;
3	Being able to create opportunities by combining supply chain management with information technologies and innovative processes by the use of the interdisciplinary courses the participants take;
4	Having the ability to develop creative solutions by working on global logistics and supply chain subjects and realizing these by the use of their project management knowledge;
5	Having the knowledge, abilities and capabilities required for effective logistics and supply chain management by the use of a problem and case analysis based learning;
6	Being able to examine logistics and supply chain processes with the management science viewpoint, analyze related concepts and ideas by scientific methods;
7	If continuing to work in the academia, having the necessary information on logistics applications; if continuing to work in the sector, having the necessary knowledge on conceptual subjects;
8	Being able to specify appropriate research questions about his/her research area, conduct an effective research with the use of necessary methods and apply the research outcomes in the sector or the academia;
9	Being able to follow the changes and developments in the sector the participant works in, in order to keep his/her personal and professional competence updated and develop himself/herself when necessary;
10	Have the necessary capabilities to pursue doctoral studies in national and foreign institutions

Contribution of Learning Outcomes to Programme Outcomes 1:Very Low, 2:Low, 3:Medium, 4:High, 5:Very High

	L1	L2	L3	L4	L5
P1	5	4	4	4	4
P2	3	3	3	3	3
P3	2	3	3	3	2
P4	2	3	3	3	1
P5	3	2	2	2	3
P6	2	2	2	1	4
P7	1	4	3	3	
P8	3	1	3	4	3
P9	3	3	3	3	5
P10	3	3	3	3	3

